نصف مقاتلات سلاح الجو الفرنسى لا تقدر على الطيران .. حتى "الرافال" .

لن تصل لذلك الهدف صاحب المناورة العالية وسرعة الكبير مع المحافظة على سرعة(الذي هو طائرة جيل رابع++)


قوة ميغ31 برادارها الكبير (حجم مقدمة ساعد على ادخال رادار اكبر حجما من بقيت الطائرات )

سرعه 3000 كم فى الساعه اخى سرعه كبيره تخولها للقيام بهدفها على ما اعتقد مع هدف عالى المناوره
لا تنسى انها تمتلك اصلا قدرات مناوره كبيره
هذه وجهه نظرى
 
سرعه 3000 كم فى الساعه اخى سرعه كبيره تخولها للقيام بهدفها على ما اعتقد مع هدف عالى المناوره
لا تنسى انها تمتلك اصلا قدرات مناوره كبيره
هذه وجهه نظرى
مناورة كبيرة؟ نقطة ضعف ميغ25و31هي المناورة السيء

ميغ 31سرعتها القصوى لبضع دقائق 2.8ماخ اما g4++ سرعتها كروز سبيد 1.6 بينما في ميغ31 0.8ماخ فقط
 
اظنك اخي كاميكاز لم تتبع المسلسل الهندي جيدا فالهند الغت صفقة الرفال و اكتفت ب 36 و السبب حسب الهنود على لسان وزير الدفاع هو اعترافهم بان كسطرة المتبعة كانت خاطئة من اﻻول خصوصا مسالة التقييمات

بل انا متابع لابأس بي :)

لم اقرأ اي تصريح لوزير الدفاع الهندي ان تقييماتهم كانت خاطئة !!
هل لك ان تزودنا بالمصدر شاكرا لك ومقدرا !


**************


اذا اردت تصريح وزير الدفاع الهندي ( الذي قرأته انا ) فاليك اياه .. وركز على الملون بالاحمر فحسب :


Parrikar says India will buy 36 Rafale jets from France instead of 126
  • HT Correspondent, , New Delhi
    |
  • Updated: Jun 01, 2015 01:33 IST
76a6e54e-2195-4caf-ba32-97069689bbd6wallpaper1.jpg

Defence minister Manohar Parrikar. (PTI Photo)
  • 93India would buy only 36 Rafale warplanes from France, defence minister Manohar Parrikar said Sunday, ruling out the possibility of acquiring more of these fighters for the air force that is battling a depleted fleet.




The minister said the previous government’s proposed $25-billion deal for 126 Rafales was economically unviable. “We are not buying the rest. We are only buying the direct 36,” the PTI quoted Parrikar as saying.

The comments are contrary to the minister’s recent position that India could buy more Rafale fighters to strengthen the Indian Air Force.

New Delhi had in April scrapped the Rafale deal –- billed as one of biggest in the country -- more than three years after Dassault, the manufacturer of the fighter jet, was declared the lowest bidder, with Prime Minister Narendra Modi opting to buy 36 of these planes in a fly-away condition through a government-to-government deal.


rafale_coming_full_circle.jpg


In an interview to HT on April 14, Parrikar said, “I feel that some more Rafale jets maybe required but need to figure out how we acquire them… but how many will hinge on the cost factor.”

The deal for 126 fighters was too expensive and would have scuttled other modernisation plans, the minister said Sunday.

Would there be any money for any other work? I also feel like having a BMW and Mercedes. But I don’t because I can’t afford it. First, I can’t afford it and second, I don’t need it. So, 126 Rafales was economically unviable. It was not required,” the minister told the news agency.

During his visit to France last month, Prime Minister the decision to buy 36 of the Rafale jets in a fly-away condition under a government-to-government (G2G) contract.

1204pg10a.jpg


India requires 45 fighter squadrons to counter a combined threat from China and Pakistan, but it has only 34 squadrons with about 18 planes each. Also, 14 of these squadrons are equipped with vintage MiG-21 and MiG-27 fighters.

Former IAF boss Air Chief Marshal Fali Major said, “Frankly, I am a bit confused. Whether you are equipping IAF with Rafales or any other fighters, it has to be done quickly. And, the IAF would be better off with fewer types of aircraft.”

Parrikar has in the past questioned the medium-multirole combat aircraft tendering process, picking holes in the method employed to determine Dassault Aviation as the lowest bidder.

He has indicated that India could go for large-scale manufacturing of the light-combat aircraft or combine some other requirements and opt for a medium-weight fighter under the Prime Minister’s Make in India initiative.

India, world’s biggest importer of arms, desperately needs to modernise its military still equipped with Soviet-era hardware. The Modi government’s move to hike to 49% the foreign direct investment in the defence sector is yet to yield results.





لاحظ تصريحاته اعلاه ( بالاحمر ) ... كل الكلام يدل على ( الكلفة العالية ) .. ( غالية ) .. ( عامل التكلفة ) .. ( هل سيكون لدي اموال لاعمال اخرى ) .. ( 126 رافال ستكون غير ملائمة اقتصاديا ) .. الخ ..


كل هذه الكلمات تشير لعامل التكلفة والسعر وليس للتقييمات نفسها التي خضعت لها التايفون , الرافال , الاف 16 , الاف 18 , الجريبن , الميج 35

indian+MMRCA+contract.png


الا تعتقد ( لو صحت فرضية وجود خلل في التقييمات ) ان الدول صاحبة العطاءات لن تحتج !!

اول خطوة هندية منطقية ستكون اعادة المنافسة ولكنهم حسموا امرهم واعلنوا التالي ...


India's decision will cause tremendous heartburn among the four countries backing the Typhoon - the UK, , Spain and Italy . The US , for instance , is still sore about last year's ejection of its F/A-18 'Super Hornet' and F-16 'Super Viper' jets from the MMRCA race after grueling field trials by IAF test pilots found only Rafale and Typhoon "compliant'' on all the 643-660 technical parameters laid down to meet specific operational requirements of India .




طياروا الاختبار الهنود وجدوا انه فقط ( الرافال والتايفون ) هما الموافيتان لجميع مفاصل الاختبارات ( مابين 643-660 نقطة اختبار ) تم وضعها للوفاء لمتطلبات عملياتية محددة للهند ..
 
لاتستعجل على رزقك ...
مشكلتك ان كلامك كله لو فضلت تتكلم من النهاردة لبكرة مفهوش اقناع
مجرد جدال بدون فائدة
في اخ هنا قالها كلمة هاتنهي الجدال العقيم ده
شاهدنا جاهزيتهم الكبيرة في ليبيا وتشاد ومالي وافريقيا الوسطى والان طائراتهم الرفال تسيطر علي العمليات في العراق .
تقارير تهدف لرفع معدل الانفاق على القوات العسكريه .ليس اكثر



 
التعديل الأخير:
اول شيء نتكلم عن جُنيح الكنارد .. جنيح الكنارد ميزة كبيرة ومكسب لاي طائرة طبعاً ولكن .. قد يتحول لعامل سلبي احياناً .. وهو عند وضع جُنيح الكنارد في موضع سيء كما في الرافال ...

%D8%A7%D9%84%D8%B7%D8%A7%D8%A6%D8%B1%D8%A9-%D8%A7%D9%84%D9%81%D8%B1%D9%86%D8%B3%D9%8A%D8%A9-%D8%B1%D8%A7%D9%81%D8%A7%D9%84-%D8%A3%D8%AB%D9%86%D8%A7%D8%A1-%D8%A7%D9%84%D8%A5%D9%82%D9%84%D8%A7%D8%B9--675x448.jpg

لاحظوا معء رجاء موضع الكنارد .. قريب جداً من جناح الدلتا .. هذا يسبب
زيادة في قوة السحب Drag في السرعات فوق الصوتية .. يعني ضعف في الinstaneous turn



!!!!!!!!!!!!!

الا الـ Close-Coupled Canards :)



Dassault Rafale is monoplane delta wing aircraft with close-coupled canard. Wings are of mid-wing arrangement with large degree of wing-body blending, resulting in aerodynamically streamlined aircraft with less interference drag than either high- or low- -wing configuration. 48 degree wing sweep results in a transonic bias aircraft with supersonic capability. This lower wing sweep also results in formation of the primary vortex closer to wing surface than in highly-swept (60 degrees or more) delta wings. Additionally, this relatively low sweep compared to some other delta-wing fighters results in lower span loading, minimizing lift-dependent drag. Wing thickness also has impact on maximum speed: thicker wing means lower maximum speed but also better characteristics in combat due to delayed flow separation. Latter shortcoming can be somewhat countered by usage of flaps. Wings can twist to prevent wing tip stalling and subsequent loss of control. Since center of gravity is aft of center of lift, trimming during flight improves maximum lift by maybe 20%.




عليك بالقراءة المطولة في التصميم وفوائده .. الـ Key Word هي : Close-Coupled Canards ...
 
العيوب هذه ياصاحبي التي ذكرتها هي سبب اهتزازات الرافال التي ظهرت في بعض الفديوهات ... التايفون تستطيع ان تقوم بالقصف الارضي وحصل لها ترقيات بهذا الخصوص وتكافأت مع الرافال حيث تضرب 6 اهداف في ان واحد .. الخبر نقله الاخ سيف ..سجل ماذا ياصاحبي ؟ التمارين على فكرة تخضع لعوامل كثيرة .. كمية الوقود وحدها مؤثرة .. تغلبت الF-14 على الF-15 باحدى التمارين لان ال F-14 حملت كمية قليلة من الوقود ..


اعتقد ان تلك كانت كاميرا ( رديئة التثبيت ) ... لكن للتأكد , عليك بالبحث عن فيديوهات اخرى للرافال وهي تقوم بالاستعراضات الجوية ( تصوير من داخل قمرة القيادة )

هذه احدى الفيديوهات ولا تبين مشكلة الاهتزازات




وهنا الفيديو الشهير عن اطباق الرافال على اف 22 في الامارات .. ولا تبدو مشكلة الاهتزازات ( برغم قوة سحب الـ G force العالية )

 
رمضان مبارك علينا وعليكم يا صديقي و اعتذر عن طول الغياب بسبب الظروف ..

بالنسبة للنقطة التي بدأت بها يا صديقي وهي ال Canards .. لنبدأ النقاش بطريقة صحيحة .. علينا أولاً أن نعرف ما هو الكنارد وماهي وظيفته في الطائرات ..

أولا ال Canards هو جنيح يكون موضعه في مقدمة الطائرة مقابل أجنحتها .. ولكن ما هي وظيفته .. ؟؟

ال Canards مبدئياً هو معوض !! ..

في مبادئ وأساسيات الطيران .. الحفاظ على استقرار الطائرة أثناء الطيران من أولويات هذه الأساسيات ..

معظم الطائرات تستخدم الجنيحات الأفقية التي في ذيل الطائرة لهذه المهمة وهي الحفاظ على استقرار الطائرة.. وهي شبيهة إلى حد كبير بالكنارد

PICT0101_1.jpg

بالإضافة إلى أنها تولد قوة سفلية .. وهنا أجنحة الطائرة الثابتة يزيد عليها الحمل حيث يجب عليها توليد قوة رفع كافية للتغلب على وزن الطائرة و القوة السفلية التي يولدها الجنيحات الأفقية في الذيل ..

وهنا نلاحظ أنه في ال Rafale و Typhoon تم الاستغناء عن جنيحات الموازنة الأفقية في خلف الطائرة و استبدالها بال Canards ..

rafale-vs-typhoon.jpg


ال Canards هنا يلعب نفس الدور ولكن بأفضلية خاصة .. فهو من جهة يحافظ على ثبات الطائرة .. وأيضا يولد قوة رفع تصاعدية وليست قوة نحو الأسفل وهذا يخفف من عبئ أجنحة الطائرة و يزيد من قوة أداء الطائرة .. و أيضاً الكنارد يخفف من قوة الجر الكلية للطائرة ..
Delta_Vortex_Rafale_1.png

حيث أنه أشبه بمانع يخفف قوة الجر التي يتعرض لها بدن الطائرة الكلي

النقطة هنا التي تحدثت عنها يا صديقي هي مكان تموضع الكنارد في ال Rafale وأن له سلبيات .. !!

تابع معي هذا الشرح .. كي أوضح لك عدم صوابية قولك ..

بدايةً إذا كانت الكنارد أفضل لماذا لم تكن جميع الطائرات تستخدم الكنارد ؟؟ .. الجواب هو أن تصميم الطائرة من الأساس هو الحكم هنا .. فتزويد الطائرة بالكنارد ليست عملية بسيطة بل معقدة جداً ..

والدور الأساسي هنا في عملية التعقيد هذه .. هي ما يسمى مركز الثقل .. بالأضافة إلى الأجنحة

اذا كانت طائرتك مزودة بالكنارد سوف تكون في مشكلة حقيقية اذا ارتفعت مقدمة طائرتك بشكل كبير نحو الأعلى (حيث مركز ثقل الطائرة يكون في النصف الأمامي لأجنحة الطائرة) فإذا لم يكن لديك قوة دفع كافية من المحركات .. ستبدأ الطائرة بالإنهيار الكلي

وللتغلب على هذه المشكلة يجب أن تكون الكنارد على مسافة مدروسة من الأجنحة وهذه المسافة ليست بثابته بل تختلف من طائرة لأخرى عكس ما تقوله أنت يا صديقي ..

فكما نرى هنا في التايفون فالكنارد موجود على مسافة كبيرة نسبياً من الأجنحة
primary-eurofighter.jpg


عكس الكنارد على الرافال التي تعتبر أقرب نحو الأجنحة

Rafale-1-1024x683.jpg


وهذا لسبب أن تصميم الرافال بالأساس فيه ثبات كبير يقي الطائرة من الدخول في (الانهيار) .. بالإضافة إلى أن بدن التايفون به استطالة أكبر نسبياً من بدن الرافال

و تصميم الكنارد بالأصل يختلف بين طائرة و أخرى و لذلك في نهاية هذا الشرح نكتشف أن كلامك عن زيادة ال Drag force في الرافال بسبب موضع ال Canards .. غير واقعي ..

و اعتذر على الإطالة في الشرح و لكن هذا غيض من فيض .. وأتمنى أن أكون قد أوضحت هذه النقطة للجميع .. واعتذر ان كنت قد اغفلت أي نقطة عن غير قصد


وشكراً ..


استاذ اخي Syrian Eagle

ما شاء الله عليك ونفعنا بعلمك ... تحياتي
 
ايييييه هذا النقاش .. بالصور وبكلام علمي ..

طيب شوف استاذي ..موقع الكنارد انا اراه عيب في الرافال .. الموضوع ليس رجوعه والمسافة القصير بينه وبين الجناح الرئيسي .. وفقط .. بل حتى ارتفاعه عن الجناح الرئيسي كبير .. ماذا يحدث هذا الارتفاع ؟ هذا يجعل التيار الهوائي يمر على 3 ممرات .. وهي
1- اسفل الجناح
2- بين الجناح والكنارد
3- اعلى الكنارد
هذا جعل الكتلة الهوائية التي تمر تحت الجناح اقل كثافة واكثر تشتتاً من كثافة الكتلة الهوائية فوق الجناح .. وهذا زاد قوة السحب Drag .. وهذا يسبب مشكلة في الرفع .. ويعني صعوبة في الارتفاعات العالية ..وهذا سبب الاهتزازات التي حدثت ..


اقرأ هذا الكلام عن ايروديناميكية الرافال ... قد تغير رأيك كليا :)

Aerodynamics

Dassault Rafale is monoplane delta wing aircraft with close-coupled canard. Wings are of mid-wing arrangement with large degree of wing-body blending, resulting in aerodynamically streamlined aircraft with less interference drag than either high- or low- -wing configuration. 48 degree wing sweep results in a transonic bias aircraft with supersonic capability. This lower wing sweep also results in formation of the primary vortex closer to wing surface than in highly-swept (60 degrees or more) delta wings. Additionally, this relatively low sweep compared to some other delta-wing fighters results in lower span loading, minimizing lift-dependent drag. Wing thickness also has impact on maximum speed: thicker wing means lower maximum speed but also better characteristics in combat due to delayed flow separation. Latter shortcoming can be somewhat countered by usage of flaps. Wings can twist to prevent wing tip stalling and subsequent loss of control. Since center of gravity is aft of center of lift, trimming during flight improves maximum lift by maybe 20%.

Wings have launch rail mounted at end, and there is single vertical stabilizer. As unswept wings are limited to subsonic flight, and wings with sweep greater than 60 degrees have poor airfield performance, high lift-induced drag, and poor maneuverability, wing sweep in modern combat aircraft is always between 20 and 60 degrees, something that Rafale’s wing sweep achieves.

Delta wing leading edge creates vortices which help lift at higher angles of attack. Whereas lowly-swept wings as found in civillian aviation stall at AoA values between 14 and 18 degrees, more swept wings offer advantage of strong vortex lift, which can be further improved by high-lift devices such as LERX which strengthen wing vortices. Vortical flows form close to wing’s surface and starts forming at very low angles of attack. End result is large improvement in lift/drag ratio at subsonic speeds for wide AoA range as well as improvement in maximum AoA values. There is, however, large amount of lift-induced drag at subsonic speeds. Another benefit of delta wing is its low wing loading (approximate measure of lift-to-weight ratio) which results in good turn performance; as low wing loading results in high gust sensitivity and is thus undesireable for strike aircraft, Rafale’s very low wing loading makes it obvious that it is optimized for air superiority. High lift coefficient (of which wing loading is part) also improves airfield and cruise performance, but negatively impacts low-altitude penetration.

Additionally, delta wing had good dynamic stall characteristics. As airfoil is rapidly pitched upward, it creates significant vorticity in air flow, improving both lift and pitching moment. Result is an improvement in instantaneous turn rate. Past the Cl(max) AoA, lift loss is more gradual.

Usage of tailless delta means that there is no adverse tailplane/afterbody pressure drag interference, and aircraft does not exhibit Dutch roll when travelling at high speed. However, as there is no tail to provide roll control, and control surfaces are on the wing itself, it means that wing must be stiffer, limiting wing twist and increasing possibility of wing tip stall. Launcher rail located on wing tip improves L/D ratio. Flutter and aerilon reversal are also eliminated, and due to Rafale being unstable, elevons add to lift when turning. Wings themselves are anhedral, reducing lateral stability; this was required due to Rafale’s wide body and wing vertical position. Flaps and aerilons can be used to improve lift during takeoff and landing.

Canards are, as mentioned, of close-coupled configuration. This has benefits on aircraft performance in both subsonic and supersonic flight when compared to conventional delta wing or wing/tail configuration. One of reasons is that canard produces vortices which are very strong immediately behind canard itself, and get progressively weaker, but also a downwash. Properly positioned downwash creates a low pressure region on front part of the wing upper surface which has a significant contribution to lift, and also causes aircraft to be dynamically unstable, providing advantage in response to control surface inputs when compared to either stable or statically unstable configurations. Further, vortices created by canard root, aside from improving wing lift during maneuvers by themselves, interact with vortices created by LERX (LERX itself creates vortices from both root and wing junction, helping both body and wing lift; vortices from canard tip energize outer parts of wings and do not interact with any other set of vortices but help with avoiding wing tip stall and improve response to aeliron inputs); this interaction between LERX and canard root vortices results in vortices being strengthened, prividing large increase in Clmax and decrease in angle of attack for Clmax, by lowering effective angle of attack of the wing. This in turn could have resulted in less lift at very low angles of attack, but vertical separation between canard and wing ensures that it does not become an issue (also a reason for Gripen’s angled canards). It does stabilize detached vortex of the main wing, thus providing greater vortex lift and which results in increase in lift at higher angles of attack; vortex lift also starts sooner for close-coupled canard configuration than for pure delta (and since canard does not interact with the wing, long-arm canard configuration can be considered “pure” delta for purposes of this explanation). Result is that Rafale does not need to achieve as high angle of attack for Clmax as pure delta would have, thus reducing induced drag from which delta-wing aircraft suffer at high angles of attack; it also achieves more lift at Clmax, by up to 50%. Wing center of pressure also moves aft with increasing Mach number due to canard delaying stall over outboard wing panels, and there is reduction in subsonic-supersonic aerodynamic center shift which means that aircraft remains unstable even when supersonic, thus improving maneuvering performance. All of these effects are stronger for canard positioned above the wing than one positioned at same level as wing; movable canard is also better lift-enhancing device than fixed canard or LERX. LERX vortices, aside from helping wing lift, also increase body lift when maneuvering, made possible by large degree of wing-body blending present. Another benefit is reduction in wing bending moment and structural weight due to shift of aerodynamic load distribution inboard.

Close-coupled canards allow Rafale to maneuver in post-stall regime by increasing maximum lift coefficient (Clmax), making it supermaneuverable (post-stall regime is any angle of attack beyond Clmax; TVC is not required for post-stall maneuvers, as even aircraft such as F-18 can achieve angles of attack beyond Clmax. Maximum angle of attack that Rafale has reached during testing is 100 degrees, showing extensive post stall maneuvering capabilities). This is a result of canard-wing vortex interaction, with presence of canard eliminating wing vortex breakdown. PSM can allow Rafale to trade energy for positional advantage in one-on-one aerial combat (this is not as good idea in flight-on-flight or squadron-on-squadron, let alone larger, encounters). They also allow spin recovery and superstall recovery; that is, aircraft with close coupled canards are almost impossible to depart from controlled flight (FCS and machanical problems notwithstanding). Additional advantage of close-coupled canards is that canard root vortexes energize air flow around vertical tail fin, meaning that it remains effective even at high angles of attack (same effect which allows wing control surfaces to remain effective at extreme angles of attack). Reason for this is a constructive interference between vortexes created by canard and those created by LERX, with downwash from canard suppressing flow separation from the wing and canard trailling edge vortex creating low pressure region above main wing surface; this effect is very pronounced in Rafale due to high canard configuration, and region makes a major contribution to lift; in fact, due to vertical separation of canard from wing, vortex lift starts appearing from 4,27 degrees of AoA. Using same effect, Saab Viggen was able to generate 65% greater Clmax at approach than a pure delta wing, achieve much greater trim control than pure tailless delta (such as Mirage) and achieve STOL capability. Rafale has advantage over Viggen in that its canards are controllable, allowing for better control of vortices, and can take off in 700 meters when carrying 4 MICAs and auxilliary fuel tank; minimum takeoff distance is 400 meters and landing distance is 450 meters. When landing, both canards and trailling-edge control surfaces can be used for braking, and Rafale may be able to use canards for braking even while in flight.

Large degree of wing-body blending means that vortices, especially those originating from canard root, allow for large amount of body lift during maneuvers. It also reduces drag in level flight, improving range. Vortexes also make wing more responsive to control surface inputs, including roll.

Along with canards and LERX, Rafale can improve lift at low speeds by using flaps, which help prevent flow separation at higher angles of attack. Combination of LERX, canards and flaps also produces very large drag reductions at typical maneuvering angle of attack, improving sustained turn rate.

In supersonic flight, close-coupled canard-delta configuration suffers from smaller aerodynamic centre shift with Mach number than pure delta, tailed or long-arm canard configuration, leading to lower trim drag due to reduced control surface deflections, and maintaining maneuvering advantages of unstable aircraft (all other configurations result in aircraft becoming stable during supersonic flight; this means slower response to control input and less lift since control surface upward deflections in stable aircraft detract from lift). Combined with already-discussed close-coupled canard features, this results in improved wing response to control surfaces inputs. Close-coupled canard also provides natural damping, making turbulence reduction FCS function unnecessary; while this characteristic is very important in low-level and transonic flight, it helps improve flight characteristic in all flight regimes.

One of important factors in airframe design is that drag rises sharply in transonic region, from mach 0,8 to mach 1,2, often doubling when compared to drag below mach 0,8. At subsonic speeds, lift dependant drag varies inversely with square of the wing span, which means that maximising wing span is desireable. But in supersonic flight, increasing wing span leads to large increase in drag. However, Rafale’s LERX creates shocks at its root, in front of wing leading edge, thus reducing drag and allowing it less sweep and larger wing span than seen in Mirage. This helps counteract drag caused by close-coupled canard.

Mid-wing vertical arrangement is more laterally stable than low-wing arrangement, especially when combined with Rafale’s wide body. As too much lateral stability can cause severe Dutch roll and excessive roll response to lateral gusts, Rafale’s wings are designed with anhedral to reduce stability.

Rafale uses two semi-circular air intakes on the windward side, separated by the body so as to prevent interaction in case of single engine failure. Their position, being shielded by the airframe, provides protection against both high angles of attack (to give an example, F-18s air intakes encounter air flow at around 60% of aircraft’s angle of attack; this is result of both their being shielded by LEX and fuselage to the side of intake redirecting air flow towards the intakes) and yaw angle, as well as sideslip. This design also means that fuselage takes the strain during carrier operations. Intakes are separated from the fuselage so as to avoid capturing the fuselage boundary layer (layer of air where air slows from high velocity relative to aircraft at its edge to standstill at the surface itself) as boundary layer, if enters engine, impairs pressure recovery and increases distortion, thus lowering intake performance; space between intake and fuselage is called external boundary layer bleed. This space is repartitioned, and expansion waves from it energize canard root vortex. Engine cooling duct is also located in this layer. In case that Rafale is equipped with stronger engine, intakes can be enlarged.

There was no need to incorporate moveable lips: engine takes what it needs, and cannot have air forced into it. What this means is that at high air speeds some air spills around the intake as there is more air flow than engine can accept. This may help the above-mentioned effect of canard root vortex energization. As engine can only make use of subsonic air flow, air flow captured in supersonic flight must be slowed down to Mach 0,4-0,5. This is done through series of shocks, with first set of shocks happening at the diffuser plate, second set at air intake mouth and further shocks being generate within the intake; it is addition of diffuser plate that allows Rafale to achieve Mach 2,0.

Dassault has opted to reject dedicated air brake (which was present on Rafale A but not on production Rafales) to save on complexity and weight, as it was deemed unnecessary – Rafale can use its control surfaces (canards and elevons) instead of brake. This also means that there is no 6 o’clock blind point due to using air brake.

Vertical fin is very high in order to remain effective at supersonic speeds, but also due to relative aft location of center of gravity, which requires larger control surface for the same effectiveness. While it may have been rendered ineffective at high AoA in conventional designs, vortices created by LERX and canards mean that it remains an effective control surface even at relatively high angles of attack.

Radome gives good aerodynamic characteristics as well as good radar performance as a result of its axisymmetric shape. Canopy is designed to provide good rearward visibility, though framing limits visibility in some directions; nose shape provides very good visibility over the nose and sides. Framing does allow for a fixed windshield in the event that canopy is detached.


 
نأتي لنقطة انبوب التزود بالوقود ( الثابت ) الخاص بالرافال


هل هو عيب !!! وهل يرفع من معدل البصمة الرادارية !!




هو بطبيعته يرفع الـRCS بشكل طفيف ولكن الفرنسيين ابدعوا في استخدام طلاء الرام الممتص للاشعة الرادارية ( في قراءة سابقة لاحد المواضيع , قرأت ان استخدام الرام امتد ليشمل انبوب التزود بالوقود بغية تخفيض الـRCS الطفيف اصلا )

The production Rafale has essentially the same general configuration as the Rafale A, but is slightly smaller. It also features changes to reduce its "radar cross section (RCS)", such as improved airframe contours, use of "radar absorbing material (RAM)", and a gold-plated canopy. In fact, for a time in the early 1990s, Dassault advertised the type as the "Rafale D", where "D" stood for "Discreet", to emphasize its semi-stealthy nature.



اما مميزات الانبوب الثابت فهي :

1- تقليل المشاكل الميكانيكية
2- لرفع مستوى تدفق الوقود , وبالمحصلة , تقليل وقت اعادة التزود بالوقود جوا .

While non-retractable probe does cause small increase in RCS, Dassault opted for it instead of retractrable one in order to reduce mechanical complexity and increase fuel flow, thus reducing refuelling time.



ملاحظة مهمة جدا :

تحدث كثيرون في المنتديات عن عيب تصميمي في الرافال وبالتالي لم يكن ممكنا استيعاب الانبوب القابل للسحب داخل البدن ( واعادوا ذلك لصغر الانف واكتضاض الاجهزة في المقدمة وبالمحصلة , لا مساحة كافية لاستيعاب الانبوب ومعداته ) ... ركزوا على الكلمة الملونة بالاحمر اعلاه ...

Dassault opted for it instead of retractrable one

داسو ايها السادة ( اختارت ) الانبوب الثابت بدل القابل للسحب داخل البدن ,,, للاسباب التي شرحتها اعلاه


لعل ذلك غالبا يرجع للدروس المستفادة من ارث الميراج العريق

dassault_mirage_f1.jpg


السوبر ايتندارد

1714621.jpg




**************


ها هنا , لنطرح سؤالا منطقيا بشدة :)

كيف سيكون حال مقاتلة ما ( بدون ذكر اسماء ) وقد اصابها hydrolic Failure او Electrical Failure اثناء العمليات وفي خضم احتياجها لعملية اعادة تزود بالوقود جوا !!!

لعل اقرب ما سيقوله المقاتل العدو هو :


Ptaht-positions-Baihe-yourself-Adel-Emam-El-Zaeem-Qfshat-play-school-rioters.jpg
 
فوائد الـ Close Coupled Canard

canards-5-638.jpg
nasatechnicalmemorandumyv6.jpg


والمحصلة ... ابداعات ايروديناميكية استفاد منها السويديون في الجريبن ( الجريبن بالمناسبة هي close coupled canard على تصميم اجنحة ديلتا .. كالرافال )

latest

والسويديون هنا سيستفيدون لا محالة من تجربتهم السابقة مع الـClose Coupled Canards في المقاتلة السابقة Ja 37
0797440.jpg


وبالطبع الجميلة الفرنسية .. رافال


لاحظوا كيفية استخدام المسننات الحارفة لاشعة الرادار

scattering.gif


rafale_m_enol_037_of_108.jpg


وهذا ليس فقط للكنارد بل يمتد للبدن في مواضع عدة

فتحات المحرك
rafale_b_tlp_051_of_144.jpg


اسفل البدن واطراف الاجنحة

DSCN4515.JPG


2qid7co.jpg


حتى مستوعبات عجلات الهبوط

rafale_b_tlp_091_of_144.jpg




بمعنى ادق ... Salute Rafale :D

rafale-typhoon.png
 
مشكلتك ان كلامك كله لو فضلت تتكلم من النهاردة لبكرة مفهوش اقناع
مجرد جدال بدون فائدة
في اخ هنا قالها كلمة هاتنهي الجدال العقيم ده
شاهدنا جاهزيتهم الكبيرة في ليبيا وتشاد ومالي وافريقيا الوسطى والان طائراتهم الرفال تسيطر علي العمليات في العراق .
تقارير تهدف لرفع معدل الانفاق على القوات العسكريه .ليس اكثر



جاهزية !؟ يارجل فرحانين انهم حسب مايدعون دخلوا اجواء ليبيا اول دولة .. واخرتها راحوا يضربوا الدفاع الجوي في بنغازي التي بيد الثوار ! يعتبرونه انجاز وان السبكترا الخ ... واخرتها الايواكس منورة التشكيل .. قائد القوات الجوية البريطانية اعلنهاى.. الخطر ليس ببنغازي الخطر بطرابلس ..
 
اعتقد ان تلك كانت كاميرا ( رديئة التثبيت ) ... لكن للتأكد , عليك بالبحث عن فيديوهات اخرى للرافال وهي تقوم بالاستعراضات الجوية ( تصوير من داخل قمرة القيادة )

هذه احدى الفيديوهات ولا تبين مشكلة الاهتزازات




وهنا الفيديو الشهير عن اطباق الرافال على اف 22 في الامارات .. ولا تبدو مشكلة الاهتزازات ( برغم قوة سحب الـ G force العالية )


ارتفاعات عالية ...
 
!!!!!!!!!!!!!

الا الـ Close-Coupled Canards :)



Dassault Rafale is monoplane delta wing aircraft with close-coupled canard. Wings are of mid-wing arrangement with large degree of wing-body blending, resulting in aerodynamically streamlined aircraft with less interference drag than either high- or low- -wing configuration. 48 degree wing sweep results in a transonic bias aircraft with supersonic capability. This lower wing sweep also results in formation of the primary vortex closer to wing surface than in highly-swept (60 degrees or more) delta wings. Additionally, this relatively low sweep compared to some other delta-wing fighters results in lower span loading, minimizing lift-dependent drag. Wing thickness also has impact on maximum speed: thicker wing means lower maximum speed but also better characteristics in combat due to delayed flow separation. Latter shortcoming can be somewhat countered by usage of flaps. Wings can twist to prevent wing tip stalling and subsequent loss of control. Since center of gravity is aft of center of lift, trimming during flight improves maximum lift by maybe 20%.




عليك بالقراءة المطولة في التصميم وفوائده .. الـ Key Word هي : Close-Coupled Canards ...
قلنالك الكنارد فيه عيب تصميمي بموقع اعلى الجناح الرئيسي .. هنا انت تزيد كثافة كتلة الهواء اعلى الجناح مقارنة باسفل الجناح .. وهذا يؤدي لقوة سحب .. هذي المشكلة حتى اكون صريح معكم حتى التايفون لديها هذه المشكلة وهذا لميلان الكنارد حيث يميل ل53 درجة .. كما انه اكبر حجماً .. وتصميم الانف المرتفع ساهم بزيادة كتلة الهواء اسف جناحها ...

على فكرة خذها قاعدة اي طائرة ذات جناح دلتا قد تعاني اهتزازات .. الا لو وجدت للاهتزازات حلول كما فعلت التايفون ( الجناح كانه مقسم لقسمين فيه درجة ميلان بالجناح .. - leading edge ) ال leading edge موجود ايضاً بالرافال والتايفون ...
 
نأتي لنقطة انبوب التزود بالوقود ( الثابت ) الخاص بالرافال


هل هو عيب !!! وهل يرفع من معدل البصمة الرادارية !!




هو بطبيعته يرفع الـRCS بشكل طفيف ولكن الفرنسيين ابدعوا في استخدام طلاء الرام الممتص للاشعة الرادارية ( في قراءة سابقة لاحد المواضيع , قرأت ان استخدام الرام امتد ليشمل انبوب التزود بالوقود بغية تخفيض الـRCS الطفيف اصلا )

The production Rafale has essentially the same general configuration as the Rafale A, but is slightly smaller. It also features changes to reduce its "radar cross section (RCS)", such as improved airframe contours, use of "radar absorbing material (RAM)", and a gold-plated canopy. In fact, for a time in the early 1990s, Dassault advertised the type as the "Rafale D", where "D" stood for "Discreet", to emphasize its semi-stealthy nature.



اما مميزات الانبوب الثابت فهي :

1- تقليل المشاكل الميكانيكية
2- لرفع مستوى تدفق الوقود , وبالمحصلة , تقليل وقت اعادة التزود بالوقود جوا .

While non-retractable probe does cause small increase in RCS, Dassault opted for it instead of retractrable one in order to reduce mechanical complexity and increase fuel flow, thus reducing refuelling time.



ملاحظة مهمة جدا :

تحدث كثيرون في المنتديات عن عيب تصميمي في الرافال وبالتالي لم يكن ممكنا استيعاب الانبوب القابل للسحب داخل البدن ( واعادوا ذلك لصغر الانف واكتضاض الاجهزة في المقدمة وبالمحصلة , لا مساحة كافية لاستيعاب الانبوب ومعداته ) ... ركزوا على الكلمة الملونة بالاحمر اعلاه ...

Dassault opted for it instead of retractrable one

داسو ايها السادة ( اختارت ) الانبوب الثابت بدل القابل للسحب داخل البدن ,,, للاسباب التي شرحتها اعلاه


لعل ذلك غالبا يرجع للدروس المستفادة من ارث الميراج العريق

dassault_mirage_f1.jpg


السوبر ايتندارد

1714621.jpg




**************


ها هنا , لنطرح سؤالا منطقيا بشدة :)

كيف سيكون حال مقاتلة ما ( بدون ذكر اسماء ) وقد اصابها hydrolic Failure او Electrical Failure اثناء العمليات وفي خضم احتياجها لعملية اعادة تزود بالوقود جوا !!!

لعل اقرب ما سيقوله المقاتل العدو هو :


Ptaht-positions-Baihe-yourself-Adel-Emam-El-Zaeem-Qfshat-play-school-rioters.jpg
ياحبيبي المسالة ليس RCS وحسب .. انت لما تطفي الرادار وتستخدم الرصد السلبي .. سيكون امامك مايزيد البصمة الكهرومغناطيسية ..
 
فوائد الـ Close Coupled Canard

canards-5-638.jpg
nasatechnicalmemorandumyv6.jpg


والمحصلة ... ابداعات ايروديناميكية استفاد منها السويديون في الجريبن ( الجريبن بالمناسبة هي close coupled canard على تصميم اجنحة ديلتا .. كالرافال )

latest

والسويديون هنا سيستفيدون لا محالة من تجربتهم السابقة مع الـClose Coupled Canards في المقاتلة السابقة Ja 37
0797440.jpg


وبالطبع الجميلة الفرنسية .. رافال


لاحظوا كيفية استخدام المسننات الحارفة لاشعة الرادار

scattering.gif


rafale_m_enol_037_of_108.jpg


وهذا ليس فقط للكنارد بل يمتد للبدن في مواضع عدة

فتحات المحرك
rafale_b_tlp_051_of_144.jpg


اسفل البدن واطراف الاجنحة

DSCN4515.JPG


2qid7co.jpg


حتى مستوعبات عجلات الهبوط

rafale_b_tlp_091_of_144.jpg




بمعنى ادق ... Salute Rafale :D

rafale-typhoon.png
مثل هذه الاجرائات ليست في الرافال وحسب هناك حتى في التايفون اجرائات لخفض الRCS بالذات في مخارج الهواء ..
المشكلة فوق كل هذا مقطع الرافال 1م٢ .. لو فرضنا مع الاسلحة 2م٢ .. هل فرقت عن ال Su-35 ضخمة الحجم ؟ .. هذا يرجع لمقدمة الطائرة المفلطحة .. وقمرة القيادة المرتفعة ..
 
اقرأ هذا الكلام عن ايروديناميكية الرافال ... قد تغير رأيك كليا :)

Aerodynamics

Dassault Rafale is monoplane delta wing aircraft with close-coupled canard. Wings are of mid-wing arrangement with large degree of wing-body blending, resulting in aerodynamically streamlined aircraft with less interference drag than either high- or low- -wing configuration. 48 degree wing sweep results in a transonic bias aircraft with supersonic capability. This lower wing sweep also results in formation of the primary vortex closer to wing surface than in highly-swept (60 degrees or more) delta wings. Additionally, this relatively low sweep compared to some other delta-wing fighters results in lower span loading, minimizing lift-dependent drag. Wing thickness also has impact on maximum speed: thicker wing means lower maximum speed but also better characteristics in combat due to delayed flow separation. Latter shortcoming can be somewhat countered by usage of flaps. Wings can twist to prevent wing tip stalling and subsequent loss of control. Since center of gravity is aft of center of lift, trimming during flight improves maximum lift by maybe 20%.

Wings have launch rail mounted at end, and there is single vertical stabilizer. As unswept wings are limited to subsonic flight, and wings with sweep greater than 60 degrees have poor airfield performance, high lift-induced drag, and poor maneuverability, wing sweep in modern combat aircraft is always between 20 and 60 degrees, something that Rafale’s wing sweep achieves.

Delta wing leading edge creates vortices which help lift at higher angles of attack. Whereas lowly-swept wings as found in civillian aviation stall at AoA values between 14 and 18 degrees, more swept wings offer advantage of strong vortex lift, which can be further improved by high-lift devices such as LERX which strengthen wing vortices. Vortical flows form close to wing’s surface and starts forming at very low angles of attack. End result is large improvement in lift/drag ratio at subsonic speeds for wide AoA range as well as improvement in maximum AoA values. There is, however, large amount of lift-induced drag at subsonic speeds. Another benefit of delta wing is its low wing loading (approximate measure of lift-to-weight ratio) which results in good turn performance; as low wing loading results in high gust sensitivity and is thus undesireable for strike aircraft, Rafale’s very low wing loading makes it obvious that it is optimized for air superiority. High lift coefficient (of which wing loading is part) also improves airfield and cruise performance, but negatively impacts low-altitude penetration.

Additionally, delta wing had good dynamic stall characteristics. As airfoil is rapidly pitched upward, it creates significant vorticity in air flow, improving both lift and pitching moment. Result is an improvement in instantaneous turn rate. Past the Cl(max) AoA, lift loss is more gradual.

Usage of tailless delta means that there is no adverse tailplane/afterbody pressure drag interference, and aircraft does not exhibit Dutch roll when travelling at high speed. However, as there is no tail to provide roll control, and control surfaces are on the wing itself, it means that wing must be stiffer, limiting wing twist and increasing possibility of wing tip stall. Launcher rail located on wing tip improves L/D ratio. Flutter and aerilon reversal are also eliminated, and due to Rafale being unstable, elevons add to lift when turning. Wings themselves are anhedral, reducing lateral stability; this was required due to Rafale’s wide body and wing vertical position. Flaps and aerilons can be used to improve lift during takeoff and landing.

Canards are, as mentioned, of close-coupled configuration. This has benefits on aircraft performance in both subsonic and supersonic flight when compared to conventional delta wing or wing/tail configuration. One of reasons is that canard produces vortices which are very strong immediately behind canard itself, and get progressively weaker, but also a downwash. Properly positioned downwash creates a low pressure region on front part of the wing upper surface which has a significant contribution to lift, and also causes aircraft to be dynamically unstable, providing advantage in response to control surface inputs when compared to either stable or statically unstable configurations. Further, vortices created by canard root, aside from improving wing lift during maneuvers by themselves, interact with vortices created by LERX (LERX itself creates vortices from both root and wing junction, helping both body and wing lift; vortices from canard tip energize outer parts of wings and do not interact with any other set of vortices but help with avoiding wing tip stall and improve response to aeliron inputs); this interaction between LERX and canard root vortices results in vortices being strengthened, prividing large increase in Clmax and decrease in angle of attack for Clmax, by lowering effective angle of attack of the wing. This in turn could have resulted in less lift at very low angles of attack, but vertical separation between canard and wing ensures that it does not become an issue (also a reason for Gripen’s angled canards). It does stabilize detached vortex of the main wing, thus providing greater vortex lift and which results in increase in lift at higher angles of attack; vortex lift also starts sooner for close-coupled canard configuration than for pure delta (and since canard does not interact with the wing, long-arm canard configuration can be considered “pure” delta for purposes of this explanation). Result is that Rafale does not need to achieve as high angle of attack for Clmax as pure delta would have, thus reducing induced drag from which delta-wing aircraft suffer at high angles of attack; it also achieves more lift at Clmax, by up to 50%. Wing center of pressure also moves aft with increasing Mach number due to canard delaying stall over outboard wing panels, and there is reduction in subsonic-supersonic aerodynamic center shift which means that aircraft remains unstable even when supersonic, thus improving maneuvering performance. All of these effects are stronger for canard positioned above the wing than one positioned at same level as wing; movable canard is also better lift-enhancing device than fixed canard or LERX. LERX vortices, aside from helping wing lift, also increase body lift when maneuvering, made possible by large degree of wing-body blending present. Another benefit is reduction in wing bending moment and structural weight due to shift of aerodynamic load distribution inboard.

Close-coupled canards allow Rafale to maneuver in post-stall regime by increasing maximum lift coefficient (Clmax), making it supermaneuverable (post-stall regime is any angle of attack beyond Clmax; TVC is not required for post-stall maneuvers, as even aircraft such as F-18 can achieve angles of attack beyond Clmax. Maximum angle of attack that Rafale has reached during testing is 100 degrees, showing extensive post stall maneuvering capabilities). This is a result of canard-wing vortex interaction, with presence of canard eliminating wing vortex breakdown. PSM can allow Rafale to trade energy for positional advantage in one-on-one aerial combat (this is not as good idea in flight-on-flight or squadron-on-squadron, let alone larger, encounters). They also allow spin recovery and superstall recovery; that is, aircraft with close coupled canards are almost impossible to depart from controlled flight (FCS and machanical problems notwithstanding). Additional advantage of close-coupled canards is that canard root vortexes energize air flow around vertical tail fin, meaning that it remains effective even at high angles of attack (same effect which allows wing control surfaces to remain effective at extreme angles of attack). Reason for this is a constructive interference between vortexes created by canard and those created by LERX, with downwash from canard suppressing flow separation from the wing and canard trailling edge vortex creating low pressure region above main wing surface; this effect is very pronounced in Rafale due to high canard configuration, and region makes a major contribution to lift; in fact, due to vertical separation of canard from wing, vortex lift starts appearing from 4,27 degrees of AoA. Using same effect, Saab Viggen was able to generate 65% greater Clmax at approach than a pure delta wing, achieve much greater trim control than pure tailless delta (such as Mirage) and achieve STOL capability. Rafale has advantage over Viggen in that its canards are controllable, allowing for better control of vortices, and can take off in 700 meters when carrying 4 MICAs and auxilliary fuel tank; minimum takeoff distance is 400 meters and landing distance is 450 meters. When landing, both canards and trailling-edge control surfaces can be used for braking, and Rafale may be able to use canards for braking even while in flight.

Large degree of wing-body blending means that vortices, especially those originating from canard root, allow for large amount of body lift during maneuvers. It also reduces drag in level flight, improving range. Vortexes also make wing more responsive to control surface inputs, including roll.

Along with canards and LERX, Rafale can improve lift at low speeds by using flaps, which help prevent flow separation at higher angles of attack. Combination of LERX, canards and flaps also produces very large drag reductions at typical maneuvering angle of attack, improving sustained turn rate.

In supersonic flight, close-coupled canard-delta configuration suffers from smaller aerodynamic centre shift with Mach number than pure delta, tailed or long-arm canard configuration, leading to lower trim drag due to reduced control surface deflections, and maintaining maneuvering advantages of unstable aircraft (all other configurations result in aircraft becoming stable during supersonic flight; this means slower response to control input and less lift since control surface upward deflections in stable aircraft detract from lift). Combined with already-discussed close-coupled canard features, this results in improved wing response to control surfaces inputs. Close-coupled canard also provides natural damping, making turbulence reduction FCS function unnecessary; while this characteristic is very important in low-level and transonic flight, it helps improve flight characteristic in all flight regimes.

One of important factors in airframe design is that drag rises sharply in transonic region, from mach 0,8 to mach 1,2, often doubling when compared to drag below mach 0,8. At subsonic speeds, lift dependant drag varies inversely with square of the wing span, which means that maximising wing span is desireable. But in supersonic flight, increasing wing span leads to large increase in drag. However, Rafale’s LERX creates shocks at its root, in front of wing leading edge, thus reducing drag and allowing it less sweep and larger wing span than seen in Mirage. This helps counteract drag caused by close-coupled canard.

Mid-wing vertical arrangement is more laterally stable than low-wing arrangement, especially when combined with Rafale’s wide body. As too much lateral stability can cause severe Dutch roll and excessive roll response to lateral gusts, Rafale’s wings are designed with anhedral to reduce stability.

Rafale uses two semi-circular air intakes on the windward side, separated by the body so as to prevent interaction in case of single engine failure. Their position, being shielded by the airframe, provides protection against both high angles of attack (to give an example, F-18s air intakes encounter air flow at around 60% of aircraft’s angle of attack; this is result of both their being shielded by LEX and fuselage to the side of intake redirecting air flow towards the intakes) and yaw angle, as well as sideslip. This design also means that fuselage takes the strain during carrier operations. Intakes are separated from the fuselage so as to avoid capturing the fuselage boundary layer (layer of air where air slows from high velocity relative to aircraft at its edge to standstill at the surface itself) as boundary layer, if enters engine, impairs pressure recovery and increases distortion, thus lowering intake performance; space between intake and fuselage is called external boundary layer bleed. This space is repartitioned, and expansion waves from it energize canard root vortex. Engine cooling duct is also located in this layer. In case that Rafale is equipped with stronger engine, intakes can be enlarged.

There was no need to incorporate moveable lips: engine takes what it needs, and cannot have air forced into it. What this means is that at high air speeds some air spills around the intake as there is more air flow than engine can accept. This may help the above-mentioned effect of canard root vortex energization. As engine can only make use of subsonic air flow, air flow captured in supersonic flight must be slowed down to Mach 0,4-0,5. This is done through series of shocks, with first set of shocks happening at the diffuser plate, second set at air intake mouth and further shocks being generate within the intake; it is addition of diffuser plate that allows Rafale to achieve Mach 2,0.

Dassault has opted to reject dedicated air brake (which was present on Rafale A but not on production Rafales) to save on complexity and weight, as it was deemed unnecessary – Rafale can use its control surfaces (canards and elevons) instead of brake. This also means that there is no 6 o’clock blind point due to using air brake.

Vertical fin is very high in order to remain effective at supersonic speeds, but also due to relative aft location of center of gravity, which requires larger control surface for the same effectiveness. While it may have been rendered ineffective at high AoA in conventional designs, vortices created by LERX and canards mean that it remains an effective control surface even at relatively high angles of attack.

Radome gives good aerodynamic characteristics as well as good radar performance as a result of its axisymmetric shape. Canopy is designed to provide good rearward visibility, though framing limits visibility in some directions; nose shape provides very good visibility over the nose and sides. Framing does allow for a fixed windshield in the event that canopy is detached.


الرافال ذات ديناميكية عالية لكن الكلام انها تتفوق على التايفون انسى ! لان لو تفوقت اصلاً سارجع الفضل للطيار .. لكن لونظرنا للطائرتين التايفون لها مميزات كثير في الديناميكية يكفيك مساحة الاجنحة 50م2 تخيل كم تولد من قوة الرفع !
 
نأتي لنقطة انبوب التزود بالوقود ( الثابت ) الخاص بالرافال


هل هو عيب !!! وهل يرفع من معدل البصمة الرادارية !!




هو بطبيعته يرفع الـRCS بشكل طفيف ولكن الفرنسيين ابدعوا في استخدام طلاء الرام الممتص للاشعة الرادارية ( في قراءة سابقة لاحد المواضيع , قرأت ان استخدام الرام امتد ليشمل انبوب التزود بالوقود بغية تخفيض الـRCS الطفيف اصلا )

The production Rafale has essentially the same general configuration as the Rafale A, but is slightly smaller. It also features changes to reduce its "radar cross section (RCS)", such as improved airframe contours, use of "radar absorbing material (RAM)", and a gold-plated canopy. In fact, for a time in the early 1990s, Dassault advertised the type as the "Rafale D", where "D" stood for "Discreet", to emphasize its semi-stealthy nature.



اما مميزات الانبوب الثابت فهي :

1- تقليل المشاكل الميكانيكية
2- لرفع مستوى تدفق الوقود , وبالمحصلة , تقليل وقت اعادة التزود بالوقود جوا .

While non-retractable probe does cause small increase in RCS, Dassault opted for it instead of retractrable one in order to reduce mechanical complexity and increase fuel flow, thus reducing refuelling time.



ملاحظة مهمة جدا :

تحدث كثيرون في المنتديات عن عيب تصميمي في الرافال وبالتالي لم يكن ممكنا استيعاب الانبوب القابل للسحب داخل البدن ( واعادوا ذلك لصغر الانف واكتضاض الاجهزة في المقدمة وبالمحصلة , لا مساحة كافية لاستيعاب الانبوب ومعداته ) ... ركزوا على الكلمة الملونة بالاحمر اعلاه ...

Dassault opted for it instead of retractrable one

داسو ايها السادة ( اختارت ) الانبوب الثابت بدل القابل للسحب داخل البدن ,,, للاسباب التي شرحتها اعلاه


لعل ذلك غالبا يرجع للدروس المستفادة من ارث الميراج العريق

dassault_mirage_f1.jpg


السوبر ايتندارد

1714621.jpg




**************


ها هنا , لنطرح سؤالا منطقيا بشدة :)

كيف سيكون حال مقاتلة ما ( بدون ذكر اسماء ) وقد اصابها hydrolic Failure او Electrical Failure اثناء العمليات وفي خضم احتياجها لعملية اعادة تزود بالوقود جوا !!!

لعل اقرب ما سيقوله المقاتل العدو هو :


Ptaht-positions-Baihe-yourself-Adel-Emam-El-Zaeem-Qfshat-play-school-rioters.jpg
الفشل الميكانيكي نادر مايحدث .. انا لم اقرأ عن هذا سوى ان الرافال ذات مرة فشلت في التزود بالوقود وحدثت مشكلة في انبوب الوقود غير قابل للسحب :)
 
انا ماتكلم عن الاغلاق والـDogFight .. انا اتكلم ان الرافال بسبب سرعتها البطيئة عجزت عن لحاق الطائرة .. التي هبطت في المطار .. وقصفتها الرافال بالهامر وهي رابضة ..
ملاحقة ايه يا حج ؟
هل هم فى سباق فورميولاحتى تقول ملاحقة؟
هل الراافال كانت تلاحقها لتمسك بها ام ماذا ؟
 
فرنسا من قدراتها في ال SIGINT وبالذات في ال IMINT(Imagery INTelligence) .. و ال ELECTRO-OPTICAL MASINT ... في عمليات بنغازي ( بالرافال ) كانت الجلوبال هوك الامريكية والاستور البريطانية( الجبارة ! ) توجه الرافال في بنغازي
في شركات فرنسية دخلت ع الخط ووعدت بحل المشكلة هذه حسب مااذكر ان شركة ثاليس قدمت وعود بحل المشكلة ولم نرى شيئاً

المشكلة تكررت في عمليات فرنسا في مالي .. حيث ان البريداتور الامريكية وجهة الرافال لضعف في حيازة الاهداف والقدرات المذكورة اعلاه ..
 
جاهزية !؟ يارجل فرحانين انهم حسب مايدعون دخلوا اجواء ليبيا اول دولة .. واخرتها راحوا يضربوا الدفاع الجوي في بنغازي التي بيد الثوار ! يعتبرونه انجاز وان السبكترا الخ ... واخرتها الايواكس منورة التشكيل .. قائد القوات الجوية البريطانية اعلنهاى.. الخطر ليس ببنغازي الخطر بطرابلس ..
هل الاواكس تغنى عن استخدام التشويش من الطائرة ؟
هل دخلت مع اواكس امطائرة حرب الكترونيةمخصصة لهذةالاعمال ؟
اى جيش حاليا يستخدم الاواكس
بخلاف ان الاواكس اساسا كان متواجدفى سماء ليبيا 24/7 لتنفيذ الحظر الجوى
 
عودة
أعلى