رد: كيفية مواجهة الامرام ؟؟؟
هذا اختي ملخص عن القتال القريب والبعيد وهو ليس اجابه على سؤالك وانما اقراي المقال وسنتناقش لاحقا في سؤالك ...
طبعا لا تاخذي كل ماهو موجود بالتقرير بانه مسلم به ....
وعلى فكره طلبك ليس بسيط :hlp[1]:
AAM technology defines the depth of the air battle. "Whoever has the longest reach controls the engagement," comments fighter analyst Ben Lambeth of the Rand Corporation. Lambeth recalls flying on a mock engagement in 1996, a four-versus-four out of Eglin Air Force Base (AFB), Florida. F-15s armed with the AIM-120 Advanced Medium Range AAM (AMRAAM) took on four F-15s simulating MiG-29s armed with R-27 Alamo MRAAMs and R-73 Archer SRAAMs. "I never had a tally on any of the bad guys. I rarely saw our wingman. We never put more than 3g on the airplane and we never got inverted. There were missiles and people dying everywhere."
This result reflects today's level of technology, in which the within visual range (WVR) and beyond visual range (BVR) envelopes are separate. A BAE Systems paper from 1996 - reflecting the UK thinking that led to the adoption of the BAE Systems Meteor AAM for the Typhoon - points out that a target beyond 40km range "can feel free to maneuver without fear of engagement". This is echoed by Robert Shaw, former US Navy fighter pilot and author of Fighter Combat Tactics. "There is virtually no missile that you can't outmaneuver at maximum range."
With today's weapons, the BAE paper notes, most MRAAM engagements will take place between 15km and 40km-range. Older short-range AAMs "lack not only total energy but also missile speed" and are most lethal at ranges under 8km, according to BAE. Between 8km and 15km, therefore, there is a 'commit' zone where the target can still avoid a merge into close combat if the odds are unfavorable.
The key to the next generation of MRAAMs, such as Meteor, is greater range and (more importantly) greater energy at range. The result is a much larger "no-escape zone". This zone surrounds a target and defines the maximum range at which the target cannot out-maneuver a missile shot. The missile's kill probability may be almost constant from its minimum range out to 80km. (One issue here, observes Shaw, is that it may be difficult to confirm that the missile has found its target, particularly in poor visibility: this may be one reason why Meteor has a two-way datalink.)
Boeing has joined the Meteor program with the intention of marketing the missile in the US. The situation is complicated by the fact that the F-22 needs it less than other fighters. Earlier this year, F-22 chief test pilot Paul Metz confirmed that the F-22's speed and altitude capability acts as a booster stage for the common-or-garden AMRAAM. At M1.5 and at greater altitude than the target (the F-22 has a very fast climb rate and a service ceiling well above 50,000ft), AMRAAM's range is 50% greater than is the case in a subsonic, same-altitude launch.
New SRAAMs are faster than the AIM-9 (due to larger motors or smaller wings) and have new infrared (IR) dome materials which do not blind the seeker when they are heated by air friction. With imaging infrared (IIR) seekers, they are just as effective against a non-afterburning target as against a full-reheat target. Under some circumstances, a modern SRAAM is a BVR missile, capable of being cued on to the target by aircraft sensors and locking on to it at an extreme range of 12-20km. "You can expect to be engaged from about 80km inbound and enter a [MRAAM] no-escape zone shortly thereafter," notes the BAE paper. The commit decision must be made sooner and, if the target pilot commits, the target will enter an SRAAM no-escape zone.
Once the fighters 'merge' - that is, their momentum takes them within SRAAM range of each other, so that the first fighter to attempt to escape will offer his opponent an open tail-on shot - improved SRAAMs and helmet-mounted display (HMD) technology multiply the opportunities for WVR shots. It is no longer necessary to point the aircraft towards the adversary; any target within the field of regard of the missile seeker can be engaged instantly.
According to one source, US Marine Corps F/A-18 Hornets from the Balkans theater recently engaged in mock combat with Israeli Air Force fighters. The Hornets were armed with AIM-9s, and the Israeli fighters carried Python 3 and Python 4 missiles and Elbit DASH helmet sights. IDR's source describes the results as "more than ugly", the Israelis prevailing in 220 out of 240 engagements.
There are lessons to be learned from this engagement and other tests which have shown similar results. One is that modern HMDs and SRAAMs are essential. A second lesson is that WVR combat is extremely dangerous and will become more so. "We'll see less dogfighting once we get the ability to engage targets 90º off the nose," says Shaw. "Somebody's going to get a shot, and if the missile is lethal you're going to get hit." Even the recent history of engagements suggests that the 'furball' of fighter combat, with multiple engagements spread across miles of sky, is on its way out. "We don't see a history of high-g maneuvering in recent engagements," says one industry analyst. "It's fun to practice but unwise to pursue."
A third lesson is that WVR is an equalizer. "An F-5 or a MiG-21 with a high-off-boresight missile and HMD is as capable in a 1-v-1 as an F-22," comments a former navy fighter pilot, now a civilian program manager. "In visual combat, everybody dies at the same rate," says RAND's Lambeth. Indeed, he says that a larger fighter like the F-22 may be at a disadvantage. In the early 1980s force-on-force exercises at the navy's Top Gun fighter school, F-14s were routinely seen and shot down by smaller F-5s flown by the navy's Aggressor units. An F-22 which slows down to enter a WVR combat also gives up the advantage of supersonic maneuverability.
Close range confrontation
Nevertheless, the experts consulted by IDR agreed that the fighter still needs to have the ability to fight at close range - including having a gun. The current state of the debate on this highly controversial piece of equipment is that the F-22 has a gun - indeed, its M61A2 installation, complete with a neat power-actuated door over the muzzle, is one of the most complex ever seen - as does the US Air Force (USAF) version of the Joint Strike Fighter (JSF). The US Navy (USN) had apparentlyy decided at one point to forgo the gun on the JSF - which is primarily intended as a deep-strike aircraft - but Boeing program managers now say that there is an "ongoing debate" on the subject. The marines, concerned about vertical landing weight, have settled on a 'missionized' gun, installed in a package that replaces an internal bomb station. Both JSF competitors have selected a Boeing-developed version of the Mauser BK 27mm cannon, fitted with a linkless feed system by Western Design. The UK Royal Air Force has considered eliminating the gun from its second tranche of Typhoons, not so much to save weight as to eliminate training and support costs.
اخي الكريم berkut_su
ساطلب منك طلب بسيط كيف تتغلب القوات الجوية بمقاتلاتها المعلنة والتطويرات الاخيرة وبالتسليح المعروف علي تفوق القوات الاسرائيلية الحالي وبتسليحها الحالي
هذا اختي ملخص عن القتال القريب والبعيد وهو ليس اجابه على سؤالك وانما اقراي المقال وسنتناقش لاحقا في سؤالك ...
طبعا لا تاخذي كل ماهو موجود بالتقرير بانه مسلم به ....
وعلى فكره طلبك ليس بسيط :hlp[1]:
AAM technology defines the depth of the air battle. "Whoever has the longest reach controls the engagement," comments fighter analyst Ben Lambeth of the Rand Corporation. Lambeth recalls flying on a mock engagement in 1996, a four-versus-four out of Eglin Air Force Base (AFB), Florida. F-15s armed with the AIM-120 Advanced Medium Range AAM (AMRAAM) took on four F-15s simulating MiG-29s armed with R-27 Alamo MRAAMs and R-73 Archer SRAAMs. "I never had a tally on any of the bad guys. I rarely saw our wingman. We never put more than 3g on the airplane and we never got inverted. There were missiles and people dying everywhere."
This result reflects today's level of technology, in which the within visual range (WVR) and beyond visual range (BVR) envelopes are separate. A BAE Systems paper from 1996 - reflecting the UK thinking that led to the adoption of the BAE Systems Meteor AAM for the Typhoon - points out that a target beyond 40km range "can feel free to maneuver without fear of engagement". This is echoed by Robert Shaw, former US Navy fighter pilot and author of Fighter Combat Tactics. "There is virtually no missile that you can't outmaneuver at maximum range."
With today's weapons, the BAE paper notes, most MRAAM engagements will take place between 15km and 40km-range. Older short-range AAMs "lack not only total energy but also missile speed" and are most lethal at ranges under 8km, according to BAE. Between 8km and 15km, therefore, there is a 'commit' zone where the target can still avoid a merge into close combat if the odds are unfavorable.
The key to the next generation of MRAAMs, such as Meteor, is greater range and (more importantly) greater energy at range. The result is a much larger "no-escape zone". This zone surrounds a target and defines the maximum range at which the target cannot out-maneuver a missile shot. The missile's kill probability may be almost constant from its minimum range out to 80km. (One issue here, observes Shaw, is that it may be difficult to confirm that the missile has found its target, particularly in poor visibility: this may be one reason why Meteor has a two-way datalink.)
Boeing has joined the Meteor program with the intention of marketing the missile in the US. The situation is complicated by the fact that the F-22 needs it less than other fighters. Earlier this year, F-22 chief test pilot Paul Metz confirmed that the F-22's speed and altitude capability acts as a booster stage for the common-or-garden AMRAAM. At M1.5 and at greater altitude than the target (the F-22 has a very fast climb rate and a service ceiling well above 50,000ft), AMRAAM's range is 50% greater than is the case in a subsonic, same-altitude launch.
New SRAAMs are faster than the AIM-9 (due to larger motors or smaller wings) and have new infrared (IR) dome materials which do not blind the seeker when they are heated by air friction. With imaging infrared (IIR) seekers, they are just as effective against a non-afterburning target as against a full-reheat target. Under some circumstances, a modern SRAAM is a BVR missile, capable of being cued on to the target by aircraft sensors and locking on to it at an extreme range of 12-20km. "You can expect to be engaged from about 80km inbound and enter a [MRAAM] no-escape zone shortly thereafter," notes the BAE paper. The commit decision must be made sooner and, if the target pilot commits, the target will enter an SRAAM no-escape zone.
Once the fighters 'merge' - that is, their momentum takes them within SRAAM range of each other, so that the first fighter to attempt to escape will offer his opponent an open tail-on shot - improved SRAAMs and helmet-mounted display (HMD) technology multiply the opportunities for WVR shots. It is no longer necessary to point the aircraft towards the adversary; any target within the field of regard of the missile seeker can be engaged instantly.
According to one source, US Marine Corps F/A-18 Hornets from the Balkans theater recently engaged in mock combat with Israeli Air Force fighters. The Hornets were armed with AIM-9s, and the Israeli fighters carried Python 3 and Python 4 missiles and Elbit DASH helmet sights. IDR's source describes the results as "more than ugly", the Israelis prevailing in 220 out of 240 engagements.
There are lessons to be learned from this engagement and other tests which have shown similar results. One is that modern HMDs and SRAAMs are essential. A second lesson is that WVR combat is extremely dangerous and will become more so. "We'll see less dogfighting once we get the ability to engage targets 90º off the nose," says Shaw. "Somebody's going to get a shot, and if the missile is lethal you're going to get hit." Even the recent history of engagements suggests that the 'furball' of fighter combat, with multiple engagements spread across miles of sky, is on its way out. "We don't see a history of high-g maneuvering in recent engagements," says one industry analyst. "It's fun to practice but unwise to pursue."
A third lesson is that WVR is an equalizer. "An F-5 or a MiG-21 with a high-off-boresight missile and HMD is as capable in a 1-v-1 as an F-22," comments a former navy fighter pilot, now a civilian program manager. "In visual combat, everybody dies at the same rate," says RAND's Lambeth. Indeed, he says that a larger fighter like the F-22 may be at a disadvantage. In the early 1980s force-on-force exercises at the navy's Top Gun fighter school, F-14s were routinely seen and shot down by smaller F-5s flown by the navy's Aggressor units. An F-22 which slows down to enter a WVR combat also gives up the advantage of supersonic maneuverability.
Close range confrontation
Nevertheless, the experts consulted by IDR agreed that the fighter still needs to have the ability to fight at close range - including having a gun. The current state of the debate on this highly controversial piece of equipment is that the F-22 has a gun - indeed, its M61A2 installation, complete with a neat power-actuated door over the muzzle, is one of the most complex ever seen - as does the US Air Force (USAF) version of the Joint Strike Fighter (JSF). The US Navy (USN) had apparentlyy decided at one point to forgo the gun on the JSF - which is primarily intended as a deep-strike aircraft - but Boeing program managers now say that there is an "ongoing debate" on the subject. The marines, concerned about vertical landing weight, have settled on a 'missionized' gun, installed in a package that replaces an internal bomb station. Both JSF competitors have selected a Boeing-developed version of the Mauser BK 27mm cannon, fitted with a linkless feed system by Western Design. The UK Royal Air Force has considered eliminating the gun from its second tranche of Typhoons, not so much to save weight as to eliminate training and support costs.