هو في الواقع السؤال الذي تطرحه هو نفسه من اثار ضجة كبيرة في موقع keypublishing بعد طرح الروس لهذه الصور عن النظام L-150-16M RWR/ELINT الخاص بسو 25 س م 3 و المشتق عن نظام سو35
الصور تظهر منصة ردار 36D6 'Tin Shield' قبل وبعد الاستهداف بصاروخ Kh-31p مضادة للاشعاع عن طريق استخدام النظام الجديد كما تظهر في المنشور صورة لصاروخ r 77 ps active -passive المزود بقناة استقبال سالبة 9m-1103m-200ps والذي سيتم دمجه مع النظام الجديد
حسب التعليقات هناك كان راي الاغلبية الغربية هو ان النظام يعتمد على نفس مبداء عمل AN/ALR-94 بمعنى ان مسالة البحث التعقب حيازة الهدف كلها تتم عن طريق نظام SNRTR L 150-35 دون حاجة الى الردار لكن توفير firing solution تتم عن طريق توجيه النظام L 150-35 للردار اتجاه الهدف في نمط lpi
{{ }} cue radar to the target in interferometer LPI mode او توجيه الردار نحو الهدف عن طريق استخدام شعاع خافت narrow beam كما هو في الرابتور بتحديد وذالك دون استثارة اوتنشيط لانظمة rwr المعادية
هذا بالنسبة لراي معظم الاعضاء الغربين اما بالنسبة للروس ومعجبيهم فساترك مع هذا التعليق
للامانة اول ما نشرت الصورة اول مرة بحثت عن مصدرها لرغبتي في قراءة المزيد عنها .. ووصلت الى نفس الموضوع على نفس المنتدى .. لكن لم اقرا الا عدة تعليقات فقط ولم اكمل
انا متفق تماما مع هذا الكلام .. لكن عندي بعض الشكوك في قدرة رادار بيسا مثل الايربيس ان يوفر مود شعاع ضيق بقدرات lpi ويمتلك very low sidelobe تمكنه من العمل بخفاء كافي في مواجهة منظومات rwr حديثة ذات حساسية عالية .
If the system L-150-16M RWR/ELINT could be able to get the bearing and coordinates from the target ( fighter) , then the Su 25SM3 should be capable to fire its R 77 missiles with ARH( Active Radar Homing), and in this case even such Su 25SM3 without air-mode radar could be able to fire this R 77 against the target.
While the target has been emitting signals that would be detected by this system L-150-16M RWR/ELINT, the target will be track by the launch aircraft , with the condition that aircraft would be is equipped with a X band datalink, then it will be capable to update the coordinates for the R 77 missile with ARH..
Just one curiosity AFAIK about the R 77 and R 37 missiles that both had been designed with digital active radar seeker in the X band, while the precursor from all ARH missiles as the former AIM 54A Phoenix and the all active service AIM 120 were operating in the Ka band.
Almost all experts in the West about active radar seekers has been claimed that Ka band will increase the precision or Pk from BVR missiles, once if it would be compared to X band that had been equipped the SARH( Semi Active Radar Homing) missiles.
Another advantage from Ka band in BVR missiles will increase the complexity from ECM devices in the adversary aircrafts, once the target should be capable to jamming both the radar in the X band from the launch aircraft, as well as the BVR missiles with Ka band seekers.
As I could remember about what I had read a long time ago, the choice of the X band in the digital-radar seeker from R 77, R 27EA (Extended Active) and R 37 had been done in order for all those BVR (Beyond Visual Range) missiles could also operate in passive mode, and with this capability it would be able to detect targets equipped with X band radars as all current fighters in service or planed.
In resume if the aircraft that had launched the R 77 was shoot down by the adversary, the R 77 would continue tracking as anti radiation missile in X band the opponent fighter without receiving any updated from the launch aircraft, so this R 77 could swift for ARH ( active mode) even if the target has halted the band X emissions.In this case the R 27P/EP( passive homing X band) will missing the target, but such as R 77 could hit the same in this ARH mode.
Thus R 27P would be replaced by R 77, while R 27EP could be replaced by the R 27EA and/or the R 37, as well as the ultra long range K 100 ( Kh 172) could be used in this same way.But that were mentioned long time ago.
However none of countries that has been using the R 77 until today, as far I known again, it has been commented about this suppose capability from R 77 to operate as an anti radiation missile against the X band radars.
I have to admit the Russian that was responsible for creating this chart with the Su 25SM3 firing the R 77 against the F 16 was very humble, because if it was an American who had created this chart the same would change the F 16 for the F 35 JSF without think twice.
فقط للتوضح الجزء الملون بالاحمر لا يخص المنظومة لكن صاحب التعليق انتقل للحديث عن صاروخ r77 ولماذا تم اختيار عمله على الاكس باند بدلا مثلا من ka باند التي توفر له دقة اعلى .. وذلك لكي يمتلك الصاروخ قدرات hoj ضد الرادارات العاملة على ترددات الاكس باند
اما الجزء الاول فهو ما يخص موضوعنا بالفعل .. لكن اعتقد ان صاحبه يتوقع او يبني كلامه على حالة شرطية .. ولذلك استخدم كلمة if في بداية كلامه .. بمعنى هو لا يتكلم عن معلومات لكن لو تمكنت المنظومة من تحقيق هذا الشئ بالتالي سيمكنها ان تفعل كذا وكذا .
سيكون من الصعب ان نعتقد ان منظومة اقل من منظومة السو 35 تمتلك قدرات لا تملكها تقريبا اي مقاتلة في العالم حاليا من وجهة نظري :لا أعلم:
عموما واحدة من اكثر الطرق التي يمكن استخدامها في الاستهداف الجوي بواسطة منظومات rwr
تجدها موضحة بشكل افضل في الصفحة الخامسة من هذا الملف
users.isy.liu.se/en/rt/fredrik/reports/05bearingsonly.pdf
IV. PASSIVE RANGING APPLICATIONS
A. Air-to-Air Passive Ranging
In Fig. 3 an air-to-air passive ranging is illustrated for an
IR sensor. This section is based on a part of the passive
ranging application from [21], where the RPEKF in Cartesian
coordinates is compared to the PF method in a Monte Carlo
simulation study.
Fig. 3. Air-to-air passive ranging.
We assume that the target is non-maneuvering and that angle
observations are available with a sample period of T = 1 s.
The initialization for PF is similar to the EKF based approach,
but instead of assuming Gaussian distribution around
different working points, we use a uniform distribution in the
range direction. In the azimuth and elevation the particles
are drawn randomly from a Gaussian density around the
initial measurement strobe. The particle lter implementation
is straightforward and in accordance with Section II-C.
The relative target height is 4000m above the tracking
platform. The measurement noise was assumed Gaussian with
angle standard deviation ' = = 1 mrad for the IR
sensor. The standard deviation for the initial velocity used
to calculate P0 was 200 m/s. The realizations in the Monte
Carlo simulation use independent measurement noise and the
initial position for each realization is perturbed by a uniform
distribution around its nominal value. The RPEKFs have range
interval rmin = 1 and rmax = 64 km, with NF =6 lters, yielding
CR = 0:1925 as in [4, 29]. For the particle lter method,
N = 60000 particles are used. In the evaluation NMC = 40
Monte Carlo simulations were performed, over L = 70 s
using the same scenario, but with different measurement noise
realizations. The performance is evaluated using the root mean
square error for each time, given in Fig. 4, according to
where xt;j denotes the estimate at time t, for Monte Carlo simulation
j. For the angle-only tracking problem, only position
coordinates are used in the RMSE calculation. As seen the PF
outperforms the RPEKF in terms of RMSE performance. To
reduce the RMSE to almost the same level as for the particle
lter, more than NF & 60 lters had to be used. The MPF
RMSE plot will be included in the nal version of the paper.