Follow along with the video below to see how to install our site as a web app on your home screen.
ملاحظة: This feature may not be available in some browsers.
اتسائل الى اي مركز سنقفز بعد الاستثمارات الهائلة في قطاع الذكاء الصناعي ...
تقديري الشخصي ،، ربما المركز الثاني او الثالث على ابعد تقدير.
Starting from Llama-2 pretrained model weights, we continue pretraining the ALLaM-7B and ALLaM-13B models on 1.2T tokens, covering both English and Arabic languages.
We first demonstrate the feasibility of adapting an existing pretrained English model (Llama-2) to fluency in both Arabic and English through tokenizer and vocabulary expansion.
..
Quotes form the research paper which was written and published by the Saudi authorities themselves
Second an option form IBm
ALLaM is a series of powerful language models designed to advance Arabic Language Technology (ALT) developed by the National Center for Artificial Intelligence (NCAI) at the Saudi Data and AI Authority (SDAIA). These models are initialized with Llama-2 weights and are trained on both Arabic and English
Not here to argue facts .. sorry
..
Flashy names or bad names or whatever if you have credible sources that back your opinion or we can distinguish between personal opinion and correct facts
..
الطريق طويل والإمارات بدأت مبكراً عندما كان الذكاء الاصطناعي مجرد مصطلح في الأوراق البحثية او فكرة في أفلام هوليوود كان لديها وزارة وانشأت جامعات ودعمت الموسسات الخاصة والحكومية في هذا المجال .. خطوات صغيرة نظرية وقتها لكن طريق الألف ميل يبداً بخطوة .. اليوم لازلنا في بداية الطريق ..
الاساس النظري للذكاء الصناعي بدأ في الثمانينيات الله يصلحك. عندها الامارات كان عمرها 10 سنين.الطريق طويل والإمارات بدأت مبكراً عندما كان الذكاء الاصطناعي مجرد مصطلح في الأوراق البحثية او فكرة في أفلام هوليوود كان لديها وزارة وانشأت جامعات ودعمت الموسسات الخاصة والحكومية في هذا المجال .. خطوات صغيرة نظرية وقتها لكن طريق الألف ميل يبداً بخطوة .. اليوم لازلنا في بداية الطريق ..
عدوكم المصاريهانت في بداية الطريق وتم تصنيفك ضمن الTOP 5 كقائد للذكاء الصناعي على مستوى العالم (GLOBAL AI LEADERS) ..
والقادم - بتكامل كل هذه الخطوات والبنى التحتية والتشريعات والاستثمارات الخ..) سيعزز هذا الموقف ويدفعه للأمام ان شاء الله.
Let’s not rewrite history: yes, ALLaM builds on LLaMA-2 weights, so what? Every major model stands on the shoulders of predecessors. The real achievement is how Saudi Arabia took that base, expanded vocabularies, retrained on 1.2 trillion tokens including deep Arabic data, and created models truly tailored for the language and culture. That’s not a minor tweak; it’s a full-scale transformation
Saudi’s NCAI and SDAIA didn’t just slap a label on a foreign model, they engineered and deployed a powerful Arabic-focused AI stack from the ground up, backed by serious compute, data, and national strategy. Unlike the UAE’s flashy demos, this is real infrastructure, real deployment, real impact
If you want to argue, bring credible sources. But don’t dismiss Saudi’s contribution like it’s an afterthought just because it’s based on existing tech. That’s how all tech evolves. The question is who owns, controls, and applies it—and on that, Saudi is miles ahead
عدوكم المصاريه, خذ حقائق هنا
ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic
The focus of language model evaluation has transitioned towards reasoning and knowledge-intensive tasks, driven by advancements in pretraining large models. While state-of-the-art models are partially trained on large Arabic texts, evaluating their performance in Arabic remains challenging due...arxiv.org
الاساس النظري للذكاء الصناعي بدأ في الثمانينيات الله يصلحك. عندها الامارات كان عمرها 10 سنين.
Nice cherry pickinga flashy demo positioned in the top performing models “based on the research paper you attached”
Nice demos
Quotes from the paper itself
We find that Jais-chat 30B, the largest model in the Jais series, achieves the highest accuracy across all models evaluated, with 62.3% accuracy.
Jais-chat 30B outperforms GPT-3.5 (57.7%) by 4.6 percentage points, making it the strongest performer on ArabicMMLU.
Falcon isn’t Arabic focused LLM
Among the evaluated general-purpose multilingual models, Falcon and XGLM lag behind significantly, suggesting their tokenization and pretraining data are less optimized for Arabic
Nice research paper ..
الموضوع صار سوالف مراهقين .. سيارة ابوي اقوى من سيارة ابوك
لا الامارات ولا السعودية محتاجين حد يثبت مراكزهم
Nice cherry picking
Yes, Jais-Chat 30B did well, on one Arabic benchmark, but let’s not pretend that alone makes it a game-changer. You’re pointing to a flashy moment in a controlled demo. That’s not general dominance, that’s selective lighting
Meanwhile, ALLaM was built specifically for Arabic, not as a multilingual model with some Arabic seasoning. That’s why it consistently outperforms general-purpose LLMs like Falcon, which, as the paper admits, lags behind in Arabic due to poor tokenization and weak pretraining data
You can quote performance numbers all day, but the deeper question is who’s investing in real, focused Arabic AI, and who’s just showing off good lighting for the press? We both know the answer
Let’s actually put things in orderNope let’s put things in the right order
Jais is an Arabic focused LLM that’s why it’s the top performing against all other models including gpt 3.5 itself meaning more than 70% of capacity is trained and developed for Arabic language usage.
Compared to AceGPT-chat (13B), both Jais-chat models (13B and 30B) exhibit substantially higher accuracy in areas including STEM, Social Science, Humanities, and Others.
…
Falcon isn’t multilingual by design it wasn’t developed for multilingual use that’s why it lags behind in Arabic tests which the paper clearly state:
…
Jais found it more challenging to answer questions from countries like Morocco which usually meant the accent and the context but that challenge did not impact its overall performance.
Jais performs best overall except in questions sourced from Morocco.
No cherry picking here you have the source and you can read it and quote it as much as you want ..
Let’s actually put things in order
Jais did well, as it should, being fine tuned for Arabic and backed by heavy compute. But the very paper you’re quoting from also shows ALLaM outperforming Jais on several key benchmarks, especially in Arabic centric QA tasks, which are far more representative of real world language understanding than selective MMLU metrics
If we’re going to talk about specialization, ALLaM is the one actually winning on deep Arabic language tasks, not just high level categories like “Social Science” with multiple choice questions. And let’s not ignore ALLaM pulling this off with a smaller model size and less compute noise, that’s optimization, not overkill
Also, saying Jais struggled only with Moroccan dialects is basically saying it tripped on a real world challenge, and that’s the point. You can’t dominate Arabic AI if you fall apart the moment dialects enter the room
So yes, nice paper. Read past the headlines, it’s ALLaM that walks out with the crown
يعجبني كذلك ، العمل بذكاء في هذا المجال المهم ..
وزارة للذكاء الصناعي ووزير ذكاء صناعي
اطلاق استراتيجية الامارات للذكاء الصناعي
منهج متكامل للطلبة في مجال الذكاء الصناعي
جامعة محمد بن زايد للذكاء الصناعي
تشريعات وقوانين وحوكمة وبنية تحتية متخصصة
استثمارات هائلة
والكثييير ....
كل ذلك اعطى الامارات مكانتها المستحقة في هذا المجال (والقادم بعون الله افضل).